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Abstract A Quantitative Structure–Property Relationship model has been devel-
oped using a new method proposed in this paper, which is aimed at overcoming
disadvantages related to the use of similarity calculations in quantitative approaches.
The method uses the concept of topological descriptor but applied to non-isomorphic
subgraphs. A symmetrical matrix comprising Euclidean distances according to dif-
ferences between the non-isomorphic subgraphs is built. This symmetrical matrix is
used as input of Partial Least Squares Regression processes for predicting sublimation
enthalpies of Polychlorinated Biphenyls. Statistical results (R2 in full cross valida-
tion, Standard Error in Cross Validation, slope and bias) of our model were obtained
and compared with those from the use of similarity values, univariate topological
descriptors and literature approaches.

Keywords Graph theory · Topological descriptors · Similarity and distance · QSPR ·
PLSR

1 Introduction

Thanks to advances in computers, abstract models that are representations of sci-
entific or technical problems or phenomena can be employed to derive predictive
tools. Thus, the role of data explanation is expanded to place the role of prediction.

M. Urbano-Cuadrado
Institute of Chemical Research of Catalonia ICIQ, Avinguda Països Catalans, 16, 43007 Tarragona,
Spain

I. Luquc Ruiz · M. Á. Gómez-Nieto (B)
Department of Computing and Numerical Analysis, University of Córdoba, Campus of Rabanales,
Albert Einstein Building, 14071 Córdoba, Spain
e-mail: mangel@uco.es

123



854 J Math Chem (2009) 46:853–865

A B C Isomorphism

Fig. 1 An example of graphs showing equal isomorphism

In chemistry, Quantitative Structure–Property Relationship (QSPR) and Quantitative
Structure–Activity Relationship (QSAR) methodologies [1–3] try to correlate chemi-
cal structure differences and their respective changes of properties and biological activ-
ities. A high number of 2D and 3D descriptors accounting for topological, electronic
or steric properties have been summarized in literature [4] as predictive variables.

Similarity measurements have been widely used in computational chemistry. Thus,
similarity calculation algorithms support many approaches for both screening chemi-
cal databases and predicting physical-chemical properties [5]. In recent years, methods
that correlate the 2D and 3D structural similarity between molecules —or between a
molecular and a 3D grid probe—with their properties have been proposed based on the
following chemical principle: “structurally similar molecules show similar properties
and biological activities” [6–9].

Computational resources involved in the structural similarity calculation are great
owing to the previous detection of (molecular) graph isomorphism. With the aim of
overcoming this disadvantage, different methods for calculating graph isomorphism
have been developed [10]. For this purpose, the use of binary fingerprints constitutes
the basis of many similarity approaches. However, this similarity calculation based
on the transformation of chemical structures into fingerprints has shown problems in
QSPR models. Non-consideration of type, size and number of substructures produce
low correlations between properties and fingerprint similarity values.

In addition to the computational cost commented, similarity measurements yield
inconsistencies when different molecules show equal isomorphism, as can be seen
in Fig. 1. When we calculate structural similarity between the A, B and C molecular
graphs, the isomorphism consisting of 11 vertexes and 12 edges is equal for the three
graphs. Similarity between any pair of the three molecular graphs is therefore equal
(SA,B = SA,C = SB,C ). Nevertheless, properties of the molecules represented by
the A, B and C molecular graphs are different. This fact explains the low correlation
achieved using structural similarity.

3D similarity calculations solve this problem by means of considering the different
spatial conformations adopted by the molecules. Despite this advantage, some consid-
erations should be taken into account. First, the geometrical optimization carried out
is based on quantum or semi-empirical principles that surpass the role of topological
calculation. Thus, calculations of electronic or steric fields of the molecules are often
involved in the 3D similarity approaches. Therefore, these methods are more complex
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and they require more computational resources than those related to topological cal-
culations [11].

In order to overcome the above commented inconsistencies through a topological
solution, we propose a new method for similarity/distance measurements between
molecular graphs. This approach is supported on considering non-isomorphic sub-
graphs. Thus, if non-common molecular substructures are analyzed and measured
with respect to a reference, a new structure-property space can be built and employed
for predicting the properties of new compounds.

The development of a QSPR/QSAR model can be divided into three stages, namely:
data obtaining, data analysis and model validation [12]. The first stage implies the
selection and generation of molecular descriptors through different methods and
software. The second stage includes the use of statistical applications for analyzing
complex data arrays, being summarized in literature two main sorts of multivariate
analysis methods: parametric approaches (multiple linear regression, principal com-
ponents regression, etc.) and non-parametric approaches (artificial neural networks
and genetic algorithms). The last stage consists of the use of several criteria and meth-
odologies for validating the equations built in the previous stages. Several statistical
parameters accounting for the correlation between predictors and properties, and the
error involved in the predictive ability are employed in this step [13].

Taking into account the stages that constitute the QSPR development, this paper
has been organized as follows: Sects. 2, 3 and 4 describes the data generation, the sta-
tistical technique and the validation process, respectively. The application of the pro-
posed method to the prediction of sublimation enthalpies of Polychlorinated Biphenyls
(PCBs) is described in Sect. 5. Finally, conclusions are highlighted in the last section.

2 Topological distances between non-isomorphic subgraphs

Similarity between two graphs G A and G B that represent the molecules A and B is
expressed as follows:

SA,B = f (IA,B, A, B) (1)

where: SA,B is a value within the range [0,1] that shows the similarity between the
molecular graphs G A and G B; IA,B is the isomorphism between the graphs G A and
G B; A and B are the sizes of the graphs, and f is a function (algorithm) or approach
that matches S and I . Thus, different similarity values can be obtained depending
on the method employed for calculating the isomorphism between molecular graphs,
namely: Maximum Common Edges Subgraph (MCES), Maximum Common Sub-
graph (MCS) or All Maximum Common Subgraphs (AMCS) [10]. When methods
based on the transformation of graphs into fingerprints are used, different similarity
values are also obtained, depending on the similarity index used and the characteristics
of the fingerprint built [14].

As upon above stated, similarity measurements can lead to deviations in the corre-
lation between molecular topologies and properties (QSPR). Our proposal takes into
account the characteristics between subgraphs that do not form the isomorphism IA,B .
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We intend to search for relationships between variations of molecular properties and
their differences according to structural topology.

Thus, we express the structural difference between two molecular graphs G A and
G B as follows:

�A,B = g(td[G A − f (IA,B)], td[G B − f (IA,B)]) (2)

where: f (IA,B) has equal meaning to that shown in expression (1); G A − f (IA,B) and
G B − f (IA,B) represent the subgraphs of G A and G B , respectively, that do not form
the isomorphism IA,B; g() is a function aimed at obtaining a distance value between
td [G A − f (IA,B)] and td [G B − f (IA,B)]; and �A,B is a metric technique that
calculates the structural difference between the non-isomorphic subgraphs of G A and
G B .

The method is therefore open with respect to several factors, namely: kind of iso-
morphism (functions f ), different descriptors or topological variables accounting for
the non-isomorphic subgraphs in G A and G B , and the technique employed for measur-
ing the distances between td() values. Thus, different QSPR models can be developed
aimed at correlating �A,B values with physical-chemical properties.

In this paper the model predictors have been obtained taking into account the fol-
lowing considerations:

• Isomorphism calculation (function f ) employed for this QSPR development was
based on the MCS (Maximum Common Subgraph) approach.

• Topological descriptors (td) were the Wiener, Hyper Wiener and Valence Overall
Wiener (VOW) indexes [3,5]. The latter is supported by the Wiener calculation
from the weighted distances matrix (D) of a molecular graph. Elements D(i, j)=1
of the distance matrix are replaced by elements D(i, j) = x , where x is the relative
bond distance between the vertices (atoms) i and j with respect to the reference
value corresponding to the C–C bond distance.

• Euclidean distance was the function g employed for measuring the difference
between td[G A − f (IA,B)] and td [G B − f (IA,B)].

A N × N topological dissimilarity matrix (�) can be built from the set consisting
of N compounds. Each element �i, j provides the topological distance between the
non common subgraphs of the compounds i and j and it shows the same value as
the element � j,i . The higher differences there are between molecules, the nearer to 1
value for the �i, j element. The diagonal of the matrix (elements �i,i ) are equal to 0.

3 Data analysis with partial least squares regression (PLSR): reducing
the distance space into latent variables

After data obtaining, the N × N topological dissimilarity matrix (�) can be considered
as a data set formed by N training elements and N variables. Each variable accounts
for the distances between a reference graph (represented by that variable) and the
remaining objects. Thus, multivariate regression techniques have to be applied to the
distance matrix in order to extract useful information. PLSR [15,16] was employed
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due to several reasons. First, the original data space is transformed to a reduced system
in which the fact of visualizing both trends and influences of the original variables
on properties is a process more intuitive than that from the original space. Thus, the
study of the number, type and characteristics of the PLS factors provides scientists
with structured information of their systems.

Second, the fact of having a symmetrical matrix requires another technique different
of multiple linear regression (MLR), which needs, algebraically, a system with more
predictors than objects. Although several approaches attempt to solve this problem
based on removing non significant variables, PLSR permits to work with modelling
spaces consisting of more variables than objects.

And third, PLSR offers the advantages of considering variance of both the pre-
dictors and the properties for building the reduced space. This construction is more
suitable to appropriate correlations between data and properties. Other techniques also
based on the reduction of the variables only takes into account the predictor variance.
For example, principal components regression (PCR) retains relevant factors that only
explain the predictor set.

3.1 The PLSR modelling

Although several algorithms have been developed for computing partial squares com-
ponents (the Non-linear Iterative Partial Least Squares NIPALS, the SIMPLS method,
the PLS2 approach, etc., and their robust versions), the work methodology, described
below, is common [17].

Be X and Y the matrixes that describe p observations and m properties, respec-
tively, for n objects. A regression using factor extraction from data computes the
factor score matrix T = XW for an appropriate weight matrix W (maximal X and Y
data variance must be explained and overfitting must be avoided), and then considers
the linear regression model Y = TQ + E, where Q is a matrix of regression coefficients
(loadings) for T , and E is an error (noise) term.

Aimed at specifying T , two sets of weights w and q have to be found to create a
linear combination of columns of X and Y such that their covariance is maximum.
The goal is to obtain a first pair of vectors t = Xw and q = Yq with the constraints
that wT w = 1, t T t = 1 (assures the orthonormality of the latent variables) and t T q be
maximal (reflects the maximal covariance structure between the predictor and property
spaces). When the first latent vector is found, their contributions are subtracted from X
and Y and this procedure is re-iterated until X becomes a null matrix. In this case, the
number of latent variables is equal to the rank of X, and then, an exact decomposition
of X and Y has been carried out.

Only a few latent variables are then considered for predicting the properties of new
objects because of the overfitting phenomenon. Although the fact of using a high num-
ber of components means to correlate more accurately predictors and properties for the
training set, this can also imply the error modelling. Thus, predictions carried out are
affected by PLS factors that explain the error component of predictors. With the aim
of both avoiding the error modelling and evaluating the predictive ability of the PLS
models, the validation stage has a key role in the development of QSPR approaches.
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4 Validation of QSPR approaches: evaluating the predictive ability
of the models

The model validation is the stage for both testing the predictive ability of the equations
and comparing their efficiency with standards and criteria. Accuracy and precision,
likely the two most important analytical properties in addition to representivity, are cal-
culated. Since the QSPR development makes use of experimental data, the model will
have maximum limits of accuracy and precision, which are given by the error involved
in reference data obtaining. The optimal PLS factor number is another parameter also
obtained in this stage aimed at removing noise modelling from the predictive equa-
tions.

The validation step can be studied with respect to three topics, namely: the meth-
odology, the statistical parameters and the criteria employed for defining the quality
of the models. Internal and external validations are the two methodologies employed
in this stage. The former makes use of objects that have been yet employed for train-
ing and, contrary, external validation is based on the use of new objects. The kind of
validation depends on the total number of compounds available for the QSPR develop-
ment. Thus, when the set of objects is small, splitting this set into the training and test
subsets involves the use of such a low number of objects that the predictive ability can
not be modelled. In order to overcome this shortcoming, k fittings and the subsequent
tests are carried out. For each cycle or fitting, the equations are built with the majority
of the compounds and, then, are tested with the remaining objects. Several cycles are
realized in such way that all the samples have been employed for testing. The final
regression model is the average of the individual calibrations.

Full cross validation is a special kind of internal validation consisting of carrying
out N cycles, where N is the number of objects, and N − 1 and 1 objects compose
the training and test sets for each cycle (also called Leave One Out, LOO).

The multiple determination coefficient (R2), the standard error in prediction (SEP),
and the slope and bias (intercept) of the correlation analysis are the statistical parame-
ters employed for evaluating the predictive ability. These parameters can be calculated
by the following expressions (3–6), respectively:

R2 = 1 −
∑(

yi − y′
i

)2

∑
(yi − y)2 (3)

SEP =
√

∑(
yi − y′

i

)2

n − 1
(4)

slope =
∑

(yi − y)
(

y′
i − y′

)

∑(
y′

i − y′
)2 (5)

bias = y − slope × y′ (6)

The yi and y′
i values are the experimental and predicted properties, respectively, and

n is the number of compounds that compose the test set. In QSPR literature, R2 and

123



J Math Chem (2009) 46:853–865 859

SEP are often called Q2 and SECV (Standard Error in Cross Validation), respectively,
if they are referred to internal validation.

There are several criteria for determining the quality of chemometric approaches.
Shenk et al. [18] proposed that R2 values higher than 0.90 indicate excellent precision,
as well as SEP values lower than 1.5 × EE (Experimental Error). R2 values between
0.70–0.90 mean good precision, as do the SEP values among 2–3× EE. On the other
hand, R2 values lower than 0.70 indicate that the equation can only be used for screen-
ing purposes, which enable distinction between low, medium and high values for the
measured parameter. If the R2 value is lower than 0.50, the equation only discriminates
high and low values.

Taking into account the SEP value, it is also accepted by the scientific community
that the limit for considering the equations as robust tools is 1.5 × SEC (Standard
Error in Calibration). In addition, slope and bias values must be evaluated for testing
if they are statistically equal to 1 and 0, respectively, at a given significance level (the
most times at 0.5 or 0.25 % levels).

5 QSPR model for the prediction of sublimation enthalpy of polychlorinated
biphenyls (PCBs)

PCBs have attracted the attention of the scientific community owing to the environmen-
tal problems related to organohalogen compounds. Non-flammability and chemical
stability of these compounds, in addition to their lipophilicity, are responsible for
their widespread problems. Several computational methods have been developed for
estimating physicochemical properties—n-octanol/water partition coefficients [19],
gas chromatographic retention times [20,21], relative heats of formation [22], lipo-
philicity, electron affinities and entropies [23], and sublimation enthalpy [24]—of the
PCBs.

In this study, the method for calculating topological distances has been applied to a
set of compounds consisted of 210 molecules—from biphenyl to decachlorobiphenyl,
considering structural isomers for intermediate substituted biphenyls—. For this set
of compounds, a structural dissimilarity matrix was built taking into account the non
common subgraphs. Each element (i, j) of this symmetrical matrix stores the �i, j for
each pair of elements. A similarity space (S) was also obtained in order to compare our
method with a similarity approach based on the MCES graph isomorphism calculation
using the cosine index [25].

With the aim of carrying out an exploratory study dealing with the efficiency of
the method we propose, Principal Components Analysis (PCA) was applied to the
similarity (S) and dissimilarity ( �) matrixes in order to make relevant hidden trends
in data. Figure 2a and b show the score plots—the first two principal components—for
the similarity and dissimilarity matrixes, respectively. The object identifier represents
the number of the chlorines that substitute the biphenyl hydrogenous and varies there-
fore from 0 (the biphenyl) to 10 (the decachlorobiphenyl). A cluster for each class
(each group of structural isomers is considered as a class and its objects show similar
properties) was only formed when the dissimilarity space was employed. In addi-
tion, the first two components explain the 45 and 65% of the data variance (see the
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Fig. 2 Score plots of the first two principal components for: a the similarity (S), b dissimilarity matrixes (�)

footnotes of the PCA plots) for similarity and dissimilarity values, respectively. These
facts point out an improvement in the results considering non-common subgraphs and
their differences.

The development of a QSPR model for predictions of sublimation enthalpy and the
study of its efficiency is a first study to pre-evaluate potential approaches. The subli-
mation enthalpy �sub Hm(298.15 K) is a molecular property that provides information
about the intermolecular forces that lead to the packing observed in the solid state.
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Table 1 Biphenyl and PCBs used in this study

Experimental data have been obtained from the bibliography. Predicted results (full cross validation) and
residuals obtained with the proposed model are also shown

Experimental values of this parameter for biphenyl and 16 PCBs were obtained from
bibliography [6]. As Table 1 shows, these values were used for model training and
testing.

As upon above commented, both the high correlation between predictors and the
consideration of predictor and property variances justify the selection of PLSR for
multivariate calibration. The low number of objects makes necessary to use internal
validation of the predictive equation, and the statistical parameters employed were R2

(full cross validation), Standard Error in Cross Validation (SECV), slope and bias.
Univariate and multivariate analysis using topological descriptors (Wiener, Hyper

Wiener and VOW indexes) and the similarity matrix of all the studied compounds,
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Table 2 Statistical results for the proposed method regarding with other studied approaches

Method R2 (full cross validation) Standard error in
cross validation
(kJ/mol)

Slope Bias (kJ/mol)

Univariate (TD) 0.56 8.62 0.81 19.42

Multivariate (Similarity) 0.72 6.42 0.92 7.90

CoMFA model 0.75 – – 2.27

Multivariate (�) 0.87 4.51 0.98 1.79

respectively, have also been carried out in order to study the usefulness of considering
both non-isomorphic subgraphs and Euclidean distance as the function g. Descriptor
values employed in the univariate analysis were calculated taking into account the
entire topology of the graph. The statistical parameters were also obtained after full
cross validating the model. The VOW descriptor yielded the best univariate approach
and this was then employed for multivariate analysis.

The fact of using a dissimilarity space lead to better results than those achieved
when VOW values and the similarity matrix were considered. As Table 2 shows,
PLSR applied to � matrixes increases R2 and slope values, and decreases SECV
and bias numbers. Thus, accuracy and precision are improved when the method pro-
posed is employed. According to chemometric criteria, the R2 values obtained for
the similarity and dissimilarity matrixes permit the use of the model for quantita-
tive predictive tasks, thus overcoming the screening role of the applications with
R2 < 0.70. Predicted values and residuals using the model proposed are shown in
Table 1.

Figure. 3a and b show the loading weights for the first PLS factor and the regres-
sion coefficients of the original variables (distances), respectively. A general decrease
of the weights and the coefficients with the size of the compounds can be observed
in both plots. Thus, the higher differences between a molecule and the PCBs with
few chlorine substitutions the higher value for the sublimation enthalpy. Although the
trend is the decrease, there are a high number of consecutive variables showing low
decreases and increases. Those variables accounts for the distances between structural
isomers.

The method was also compared with the computational approach from which exper-
imental values of sublimation enthalpy were obtained [24]. This approach is based on
the Comparative Molecular Field Analysis (CoMFA) technique. Table 2 shows the
values for the parameters used in our study and available from the above commented
approach. These statistic values support the higher efficiency of our method.

6 Conclusions

In this paper new QSPR model based on both the consideration of graph isomorphism
and the measurement of distances between the non-isomorphic subgraphs has been
proposed.
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Fig. 3 Loading weights of the original variables (distances) for: a the first PLS factor, b the regression
coefficients

Different kinds of isomorphism, topological invariants and distance approach can
be considered in order to obtain a distance (dissimilarity) matrix for predicting prop-
erties. Thus, different models can be developed aimed at correlating �A,B values with
physical-chemical properties and/or biological activities.

A QSPR model for determining sublimation enthalpies of PCBs was built with the
method here presented. The statistical values obtained in the PLSR model validation
indicated an improvement on the predictive ability when the dissimilarity matrix was
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employed as the predictor space. According to chemometric criteria, the QSPR model
has the role of accurate and quantitative approach. The method showed better results
than those obtained with complex 3D approaches. This fact would mean that advanced
topological methods can correlate structures and packaging properties in an efficient
way.

Besides this, distance measurements might be used to calculate “fine similarity”
values between molecules. These corrected similarity values account not only for the
structural similarity between two molecular graphs (subgraphs isomorphism) but also
for the approximate similarity between the remaining non-isomorphic subgraphs. We
are using distances and approximate similarity values for the development of new
QSPR models and screening methods.
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